
Journal of Statistical Physics, Vol. 65, Nos. 1/2, 1991 

Origin of Rate Dependence in Frictional Sliding 
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Experiments indicate that frictional resistance to sliding between macroscopic, 
clean, dry surfaces depends on the average rate V at which the surfaces are 
translated relative to each other. Using a new lattice automaton, we obtain 
results suggesting that rate-dependent macroscopic dynamics may arise from 
microscopic interactions between contact points which decay from a metastable 
state with a finite lifetime F. Sliding is accommodated by clusters, or avalanches, 
of failed lattice contact points, and corresponds to successive quenches into the 
metastable state by an electromechanical loading system with a finite response 
time zJ. Under the quasistatic assumption zl ,> F, rate dependence is a conse- 
quence of the increase in correlation length ~d of clusters of failed lattice points 
as quench rate increases. Special cases of the model are isomorphic to the self- 
organized criticality model for sandpiles, and to block-spring models of the type 
first studied by Burridge and Knopoff for earthquakes. 

KEY WORDS: Friction; critical phenomena; earthquakes; self-organized 
criticality; scaling. 

Labora to ry  experiments  of frictional sliding between clean, dry, macro-  

scopic surfaces t ransla t ing in relative mot ion  indicate that macroscopic  fric- 

t ion stress depends on the average rate V at which the two surfaces slide 
over each other. (1-4) These experiments indicate that  for small velocities V, 
increasing V leads to decreasing friction force F. This effect is termed 

"velocity weakening,"  and  is usually ascribed to a variety of ra te-dependent  
deformat ion  processes operat ing at the microscopic scale on  the sliding 

surfaces. (1-41 In  typical experiments,  V ranges from a few tenths to a few 
thousands  of micrometers/second.  Sliding can be either unstable,  in which 
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a portion of the relative slip occurs in discontinuous jumps, or stable, in 
which the relative slip is a continuous function of time. By contrast, atomic 
force microscope (AFM) experiments of a tungsten tip sliding on a 
graphite substrate indicate no evidence of rate dependence (s) over the 
velocity range V=40-4000 ~/sec. The friction force F undergoes a 
transition from stable sliding to stick-slip as the normal load on the tip is 
increased, but in all cases F is a periodic function of the reference point dis- 
placement Vt (t is time). Spatial periodicity is equal to that of the atomic 
lattice. An important question is therefore to reconcile the results showing 
that F can be a spatially periodic function of slip on the microscopic scale, 
and yet be a function of V on the macroscopic scale. 

In this paper, we present a model for frictional sliding that reproduces 
several important aspects of observed experiments, and moreover provides 
clear physical interpretations for all relevant macroscopic variables. Our 
starting point is a lattice automaton model generalized from earlier 
models developed in the seismological literature. (6~ The model idealizes the 
contacting surface as a lattice of microscopic contact points, called 
"asperities." Sliding of the surfaces occurs when, upon successive application 
of a shearing force at a series of discrete times, contact points fail and slip 
relative to each other. An important component of our model is the 
existence of two time scales, which we call F and A. The former is defined 
as the average time for an asperity to fail upon application of sufficient 
shearing force. The latter is defined as the average time interval between 
successive application of shearing force. The interval A has a readily 
measurable value and a clear physical meaning, described below. We argue 
that F is in fact equivalent to the average lifetime of an asperity in a state 
of metastable equilibrium, and that V is an average quench rate. Thus we 
regard the sliding process as possessing similarities to nucleation and 
critical phenomena. 

We find that our model can explain the macroscopic laboratory obser- 
vations of rate dependence in the limit when A > F. A significant result is 
the appearance of macroscopic rate dependence similar to the laboratory 
experiments, despite the lack of any rate dependence at the microscopic 
scale. Thus our model suggests that the macroscopic dynamics (the rate 
dependence) of the system may be a result of the interplay between the 
laboratory apparatus and the sliding surfaces. That the limitations of an 
experimental apparatus can influence the outcome of an experiment is well 
understood (e.g., quantum mechanics). 

Typical experiments are conducted as shown schematically in Fig. 1 
(top), in which a sample block of mass M is dragged over a contacting 
surface at velocity V(t) by a servo-controlled ram-and-piston arrangement, 
represented by the spring with constant K. The normal force NF on the 
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Fig. 1. Top: Block sliding over frictional surface. Middle and bottom: Changes in V produce 
changes in frictional resistance (after ref. 2). 

block is specified, and the sliding surfaces are prepared by grinding to a 
known roughness. If the sliding rate V is small enough that inertial forces 
may be neglected during steady sliding, the ram force is equal to the fric- 
tion force F resisting sliding. The relative sliding rate between the surfaces 
is monitored by displacement gauges spanning the contacting surfaces, the 
servo-controller adjusting the ram force so as to produce the specified 
velocity as a function of time t. The servo-controlled electromechanical 
driving system has a characteristic response time interval of the order of 
milliseconds, over which the adjustment occurs. We argue that this elec- 
tromechanical response time interval plays the same role in the laboratory 
as does A in our model. 

Within a certain range of sliding rate, typically V= 0.1-100 #m/sec, a 
sudden increase ~ V > 0  in V typically produces: (1)a sudden, sharp peak 
in the observed force F required to pull the block, followed by (2)a 
gradual decline in F to a new value lower than before (Fig. 1). A sudden 
decrease by 6V produces the inverse effect. Current models for describing 
this effect over a small range in V postulate the existence of one or more 
state variables On(t). Models with one state variable O(t) have been 
proposed (~) in which O(t) represents the average asperity contact time. 
However, other work (2) indicates that at least two state variables O,(t) 
( n = l ,  2) are needed to adequately model effect2), and more state 
variables produce an even better data fit. Thus the contact time interpreta- 
tion of O(t) cannot be correct. 



406 Rundle and Brown 

An example of a rate-dependent friction model is (=) 

F= F, + A ,  log(V/V,)+~ O, 
n 

dO./dt = -(V/D.)[O.(t) + B. log( V/V,) J 
(1) 

There are 3 + 2L constants, (F, ,  A, ,  V,) and (D,, B, ; n = 1 ..... L), which 
must be determined by experiment. The D~ are characteristic distances over 
which 0, evolves, and are typically 1-100/~m for laboratory experiments, 
crudely similar in magnitude to the grit size used to grind the surfaces. It 
is also known that A , -  B n < 0 describes sliding with instabilities, whereas 
A , -  B, > 0 characterizes stable sliding. (2-4) Convincing physical interpreta- 
tions for B,, F , ,  A, ,  and V, are lacking at present. Moreover, the physical 
meaning of the state variables 0, must be identified as well. 

The important questions we address in this paper are (1)to reconcile 
the observations of macroscopic rate dependence of frictional strength with 
microscopic rate independence, and (2)the physical meaning of the state 
variables. While the model we present below suggests answers to both these 
questions, it is not clear that these answers are unique. 

We propose that rate-dependent macroscopic friction arises as a 
cooperative effect of the rate-independent cohesion-decohesion occurring at 
all of the microscopic contact points between the sliding surfaces. By 
cohesion-decohesion we mean the process in which two contact points 
(asperities) on the opposing surfaces stick together until the local force 
becomes large enough to break the contact, and cause the corresponding 
points on the two surfaces to jump laterally apart to new local equilibrium 
positions. This process can also be called microscopic "stick-slip" friction. 
Below we present a conceptually simple lattice automaton model that 
illustrates the cooperative nature of macroscopic friction. Our automaton 
replaces details of microscopic cohesion-decohesion by a simple jump 
rule. The jump rule provides the specification for calculating the slip under- 
gone by pairs of microscopic contact points subject to macroscopically 
applied forces. While our model is simple, it nevertheless displays spatial 
periodicity of F on the microscopic scale, and rate dependence of F on 
the macroscopic scale. The latter arises as a consequence of the rate 
dependence of the correlation length ~a for clusters of failed asperities near 
a dynamical critical point. 

We proceed by erecting a lattice dividing the bottom surface of the 
macroscopic block in Fig. 1 into an M x M lattice of adjoining microscopic 
squares. The force ai on the ith square is (v) 

(Ti(t) = pi(t) + ~ Tij~)j(t ) (2) 
J 
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where Pi is an externally applied force, and T o is an interaction between 
squares (Green's function). The order parameter q~i(t)= s~-  Vt is the "slip 
deficit," with s~ being the total distance square i has slipped. A failure 
envelope ~F is specified, so that slip occurs if a~ > a F. Following ref. 8, we 
define patch i to be in an active (metastable) state having a lifetime F when 
o-~ > o -F, and in a passive state when ~i ~< a r. There are two critical assump- 
tions in the model: (1)both the lifetime F and the response time A are 
independent of V, and (2) A ~> F, so that the surfaces slide quasistatically and 
are thus at equilibrium during most of  the increment A. The dynamics is 
generated by incrementing t by 3t = A, producing a force increment &r~ = 

- Zj  To VA > 0 at site i at regular intervals 6t. As these sites fail by sliding, 
a chain reaction or avalanche of failed sites may occur by triggering of 
neighboring sites. For our numerical calculations, we put 6t = A = 1. 

The final specification in the model is the jump rule (6'7) by which a site 
decays from the active to the passive state. As an example, suppose that 
V=0,  so that (2) becomes a i ( t ) = p i ( t ) + F j  Tijsj(t). Use 0"F=aF=const ,  
and assume that T 0 is an interaction whose self-interaction term is 
T<s> = - 4  and whose nearest-neighbor interactions are T<nn> = +1. The 
dynamics is generated by increasing p~ until one or more a~/> J .  At that 
point, all sites in the active state are updated by the jump rule s~ ~ s~ + 1. 
When si increases by 1, o- i ~ 0" i -  4, and O-(nn) --)" O ' (nn)  -}- 1. If ai is identified 
with z~ in ref. 8, it is clear that the dynamics is identical to the self- 
organized criticality (SOC) model for sandpiles. (8) While the SOC model is 
distinguished by having a divergent correlation length ~d ~ oo in the self- 
organized critical state, the models we discuss below, which have different 
T 0 and different jump rules, have finite ~d that depend on V. 

More general models with finite ~a are obtained when the zeroth 
moment T (~ = Zj  T0 < 0, for different jump rules. Our results (i.e., scaling 
exponents and statistics) are insensitive to the choice of jump rule, 
indicating the possibility of universality for given T o . For models with 
T(s ) < 0, T(nn) > 0, and T (~ < 0, there is an appealing physical inter- 
pretation, the two-dimensional massless Burridge-Knopoff model. ~ A 
network (Fig. 2) of massless microscopic blocks representing the lattice 
patches are connected together by coupling springs with constant 
K L = - T  (~ Each microblock is also connected by a loading spring 
Kc= TKnn) to a rigid loader translating at velocity V. Motion of the 
microblocks is resisted by friction on the sliding surface. Each microblock 
represents an asperity on the underside of the macroscopic block of Fig. 1. 

The jump rule used below is motivated by the observation that many 
physical properties of natural surfaces are fractal (1~ with dimension D in 
the range 2.1-2.5. For example, the topography of a single surface, as well 
as the topographic separation between surfaces, display thi s property. In 
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Fig. 2. Burridge-Knopoff model. 

other words, there are long-range correlations in surface properties charac- 
terized by power-law spatial dependence. It is logical to assume that 
cohesion between surfaces is also characterized by a power law with a 
similar fractal dimension. It was therefore assumed that o -f  is a fractal, and 
a failure surface a r was generated (11) with D = 2.2, bounded by the limits 
50~<~rF~<350. After each time increment A, stress at all lattice points is 
checked sequentially, in a series of iterations. By assumption, each iteration 
takes one relaxation time F. In each iteration, if a site is in the active state, 
its slip si is updated by an amount 6si= {(o - ~  ai)/T<~>}, where o -z~ is the 
dynami c frictional, or healing, strength. In our numerical calculations, 
a o =  10. Thus, each microblock undergoes simple frictional stick slip 
(cohesion-decohesion). We also experimented with two other jump rules. 
In the first, a F is a random function of position (cohesion is spatially 
uncorrelated). In the second, cr F = const, and the slip increment is obtained 
by moving the microblock forward to a local minimum potential energy 
position plus a random overshoot. The resulting macroscopic dynamics 
(statistics, dependence on Kc and KL, and scaling exponents) were identical 
in all significant respects. 

To summarize our automaton, we have the following rules: 

1. Begin from random initial conditions s~(0). 

2. Increment time t by 6t = A = 1. 

3. Assuming T<~><0, T<nn>>0, and T(~ calculate the local 
stress ai(t) at each site using (2) with p~(t)= 0: 

~,(t) = ~ To.sj(t ) - Vt ~ T~ (3) 
J J 

4. With t fixed, pass through the lattice to locate all active sites with 
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g i ~ g  F, and adjust the slip of all such sites, si~si+c~s~. By 
assumption, one iteration takes a time interval F. 

5. Repeat step 4 until no active sites remain. 

6. Repeat steps 2-5 until t increases to a preset limit. 

Our automaton model is consistent with the results showing that F 
can be a spatially periodic function of slip on the microscopic scale, and yet 
be a function of V on the macroscopic scale. To see this, first consider the 
microscopic dynamics of our model, and assume T<s> < 0, T < n n >  > 0 ,  and 
T(~ Using only one pair of contacts across the surfaces gives 
a microscopic friction force F=ai=[T,O~]=IT<s>] ( V t - s i ) .  As t is 
incremented by A, gi increases in units of 6g~ = I T < J  VA until ai = gF. At 
that point, si ~ si + (gF_ gO)~] T<~>[, and g~ ~ go. Following this jump to 
a new state, g~ again begins to increase by cSg~ = ]T<~>I VA, and the process 
repeats. The result is that F is a periodic (sawtooth) function of reference 
point displacement Vt, similar to results of the AFM experiments. (5) 

For  macroscopic dynamics, the force is not a simple function of Vt. 
Here the dynamics generates avalanches or clusters of failed . sites which 
appear on each time step (Fig. 3). The spatial average of slip rate on the 
clusters fluctuates closely around V. To illustrate this, we performed a 
calculation for a particular model in which T<~> = - 5 ,  T<nn> = I, and 
T (~ = -1 .  If the rate of occurrence N(S) of clusters of size S is plotted 
against S (Fig. 4), a scaling interval is observed, N(S) oc S -~ with Fisher 
exponent ~ ~ 1.6. With increasing V and fixed 6t = A, the number of failed 
sites must increase to provide the extra slip at each time step. Both the rate 
of occurrence of clusters of a given size increases, as well as the critical 
cluster size Sc terminating the scaling region (Fig. 4). It is reasonable to 
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Fig. 4. Frequency of occurrence N(S) per lattice site per time interval of clusters of size S, 
for calculation shown in Fig. 3. 

expect (11) that the mean cluster size {S) ,  and therefore also the critical 
cluster size Sc, is a power law function of the dynamic correlation length 
~d, Sc ~: ~ffc, where Dc is an "average" fractal dimension, Dc > 0. Therefore 
~d is an increasing function of V. 

In the empirical rate-dependent models (1), the initial change ~F in F 
following a sudden increase from V1 to V2 is ~F= A ,  log(V2/V~), a sharp 
increase. The narrow peak in F (Fig. 1) is therefore treated in (1) as a 
property of friction. However, it is clear from Newton's law that a sudden 
change in momentum of a real block, M ( V 2 -  V~), over a short time ~St 
demands that the initial force be impulsive. Thus, the term A,  log(V/V,) 
must arise at least in part from inertia. 

Our calculations indicate that the long-term dependence of friction F 
on V occurs through the dependence on cluster frequency N(S). Let 
F =  ~(t) denote the spatial average of ai(t). Following an increase from V1 
to V2, ~(t) at the end of each ~t (relaxed value aR; Fig. 5) is on average 
lower for V2 than for VI. However, a(t) at the beginning of each 3t 
(unrelaxed value av) is on average higher for V2 than for V1. If it takes q 
iterations through the lattice during the interval 6t to reduce all lattice sites 
to ai < a~, the average force aA(t) observed for the interval ~t = A will be 

1 ~t+~ Ear(t) qF+ aR(t)(3 - qr)] 
F= aA(t) = ~ a(t) dt ~ A 

~R(t) (4) 

if A >> qF. This is called "velocity weakening," since a step increase in V 
leads to a decrease in F. If there can exist conditions under which q F ~ A ,  
then F =  aA(t) ~ au(t).  This would be observed as "velocity strengthening." 
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Fig. 5. Low-pass filtered change in the model stress ~r A (=friction force F) as the rate V is 
changed from 1 to 4 to 8. 

Crossover from velocity weakening to velocity strengthening has in fact 
been observed in experiments. (3) 

Denoting the spatial average of ~bi(t ) over the lattice by ~b(t), Eq. (2) 
indicates that a change 6q~(t) induces a corresponding change cSa(t) in 
average stress a(t)=F(t) of 6F(t)= 3a(t)= TI~ We have observed 
that an increase in V produces an excess number of lattice clusters for a 
brief duration, allowing slip on the lattice to more than catch up with 
the increase in V. Moreover, our model predicts that the state variables 
On(t) in (1) are the slow modes (13) in the dynamics. Thus, O,(t)- 
A(kn) T(kn) ~(kn, t), where q~ is the Fourier transform of ~bi, T(k,) is the 
transform of T,j, and A(k,) is a function sharply peaked about modes k,  
near zero. Thus, our model also predicts that only the first few On(t) will 
be important. Possible forms for the relaxation time spectrum include, for 
example, ~n oc ~Z~h(kn), where h is a function of kn. Internal state variables 
similar to On(t) are often encountered in theories of material deforma- 
tion (14~ and may be amenable to a similar interpretation. 

To summarize our results, the macroscopic rate dependence arises 
because increasing V corresponds to an increasing number of asperities 
quenched into the metastable state. Hence the correlation length ~d for 
clusters of failed lattice points increases with increasing V. Moreover, the 
number of clusters of all sizes increases with V. More failed points in 
clusters of all sizes means that average stress on the lattice is lower during 
most of each interval A. In steady sliding, the measured friction force is 
equal to the spatial average of lattice stress averaged over the time interval 
(t, t + A). Thus, the friction force declines as V increases. Our model leads 
to the prediction that the state variables On(t) are proportional to the 
amplitudes of the slow modes of the field variable ~b~(t). Finally, we hope 
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that our model motivates experimentalists to search for confirmation of our 
ideas in laboratory data, specifically to measure the value of F, and to test 
the validity of the important assumption A ~> F. 
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